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Abstract 

Tools to automatically summarize gene information 
from the literature have the potential to help 
genomics researchers better interpret gene 
expression data and investigate biological pathways. 
The task of finding information on sets of genes is 
common for genomic researchers, and PubMed is 
still the first choice because the most recent and 
original information can only be found in the 
unstructured, free text biomedical literature.  
However, finding information on a set of genes by 
manually searching and scanning the literature is a 
time-consuming and daunting task for scientists. We 
built and evaluated a query-based automatic 
summarizer of information on mouse genes studied in 
microarray experiments. The system clusters a set of 
genes by MeSH, GO and free text features and 
presents summaries for each gene by ranked 
sentences extracted from MEDLINE abstracts. 
Evaluation showed that the system seems to provide 
meaningful clusters and informative sentences are 
ranked higher by the algorithm.  

Introduction 

With the increasing volume of published free-text 
scientific articles, even the most robust information 
retrieval (IR) engine returns more documents and 
abstracts than biomedical scientists are able to 
manually review. The problem is aggravated by the 
information-intensive nature of some “high-
throughput” technologies, such as gene microarray 
experiments that can study expression at a genome-
wide scale. Some of the possible approaches to this 
problem include: document clustering, information 
extraction, question answering, and summarization.  

Document clustering techniques attempt to group a 
text collection into clusters of articles that relate to a 
similar topic. PubClust [1] is a system that groups the 
result of any PubMed search using words in the 
returned abstracts as features. Therefore, users can 
pick the topics of interest for their purpose. 

Information extraction (IE) methods discover 
structured information from free text using natural 
language processing (NLP) techniques. IE is used 
mostly in the biomedical domain to extract relations 
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between biological entities [2]. IE often involves 
hand-crafted templates and rules based on expert 
knowledge and intensive NLP processing. 

Question answering has been getting more attention 
recently. The idea is to let users ask a structured 
question, such as ‘What is the role of prion in mad 
cow disease?’ and the system will process the 
document collection and extract the corresponding 
information as answer. This is similar to IE but is 
real-time and gives the user more control over the 
information extracted as well as more context with 
which to verify the answers. The TREC Genomics 
Track has recently focused on this topic [3]. 

Another potentially useful, but less-studied approach 
is to automatically produce customized summaries 
for the users who are analyzing the result of a 
specific microarray experiment. Summarization is 
defined by Sparck Jones [4] as “a reductive 
transformation of source text to summary text 
through content reduction selection and/or 
generalization on what is important in the source”. 
Automatic summarization systems have been studied 
since the late 1950s [5,6] and applied in different 
domains such as news, with some notable success 
[7]. However, adopting the technology in the 
biomedical domain is not as straightforward. There 
are fewer resources available in biomedicine, such as 
test corpora and knowledge bases, which makes 
training and evaluation more difficult. Summaries for 
biomedical literature probably require a different 
focus than news articles [8]. The information that 
most interests scientists may reside in sentences 
describing some specific biological processes (use of 
domain specific language e.g. phosphorylation, 
activation, co-expression) while in the news domain, 
the who, when, what, and where elements are 
generally applicable and often the most important. 
We can exploit the specific requirements in the 
biomedical domain by emphasizing domain specific 
keywords to construct summaries.  

Here we report an approach to produce gene 
information summaries by sentence extraction 
following the Edmundson paradigm [5]. Focusing on 
gene sets from microarray experiments, the system 
consists of a two-step process. First the gene set was 
clustered into functional related groups based on free 
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text, MeSH, and GO features. Next, a summary for 
each gene is generated as sentences ranked by 
domain specific vocabulary, length, representation of 
its functional cluster, cue words and recency. Finally, 
each sentence is linked to MEDLINE to allow 
interested users further investigation. Previous work 
either focus on functional gene clustering [9,10] or 
gene information summarization[11], but there was 
no integration of this two related steps in microarray 
data analysis process.  

Methods 
The system is implemented in Python, and accessible 
via the Web. Figure 1 depicts the architecture of the 
system. The system’s core components consists of a 
GO, MeSH and word pre-processor, a wrapper 
around CLUTO1 (a preexisting clustering 
application), and a sentence ranker.  

 
Figure 1. System architecture. 

The 10-year MEDLINE corpus (from 1994 to 2003) 
used in TREC 2004-2005 Genomics Tracks [12] was 
filtered using the MeSH Heading “Mice,” resulting in 
a mouse-focused subset. We decided to focus on 
mouse genes initially to allow us to restrict the 
domain to mouse research, an area that we had 
developed relationships with researchers who would 
participate in our study. Restricting the domain to 
mouse research also allowed us to achieve higher 
accuracy in gene name recognition. Using our 
gene/protein name entity recognition and 
normalization system (NER) [13] configured for 
mice, this subset was processed and gene and protein 
names were tagged and identified by Mouse Genome 
Informatics identifiers (MGI_ID). Sentences in the 
abstract and title were stored in a database together 
with other MEDLINE entries such as MeSH 
headings and publication date. This process resulted 
in the sentence collection used in this study. There 

                                                           
1 http://www-users.cs.umn.edu/~karypis/cluto/index.html 
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are a total of 284,900 abstracts covering 11,311 
mouse genes. Sentences containing at least one 
reference to gene/protein were further indexed by 
MGI_ID to facilitate retrieval. 
Clustering of genes into functionally related groups. 
We modeled the genes by three categories of 
features: 
1. MeSH Headings associated with the publications 

in which the gene is mentioned.  
2. Gene Ontology (GO) terms associated with the 

genes as annotated by Mouse Genome Informatics 
(MGI) group.   

3. Free text words in the sentences with at least one 
reference to a gene and sentences immediately 
before and after them, with stop word removal, and 
stemming. 

Each gene is modeled as vector combination of the 
above three categories of features. Direct k-means 
clustering algorithm was used to find the functional 
clusters. Clustering was performed using these 
features in the following manner:  
• MeSH term filtering: only terms deeper than the 

second layer were included because we found 
terms close to the root were too general, such as: 
‘GENE’ and ‘PROTEIN’.  

• Similarity measure: similarity between genes is 
calculated as the cosine of the angle between the 
two gene vectors: cos(gi, gj)=gi ● gj/|gi| |gj| 

• Number of clusters: this is a parameter CLUTO 
takes as input. We empirically determined this 
parameter at run-time. Let ε be the ratio of 
improvement of internal similarity of all clusters 
by increasing the number of cluster by 1: 
 ε = [I2(n+1)- I2(n)]/I2(n)  where I2 is the measure of 
sum of the internal similarity all clusters, and n is 
the number of clusters. Once ε reaches a low 
enough value, we stop. Currently it is set at 0.035, 
i.e., n is chosen when the improvement is less than 
3.5% by increasing the number of clusters by one. 

Ranking of sentences for each gene. The number of 
sentences for each gene identified in the literature 
corpus varied from one to 30,216. The users can 
choose the number of most recent sentences to return. 
Sentences are modeled as word vectors after parsing, 
stop word removal and stemming. Each sentence is 
assigned a score by linear combination of features. 
The features were chosen following the framework 
of Edmundson [5] with modifications customized to 
biomedical domain. Sentence score S is calculated as: 

 S=w1 CluSim + w2 NGene + w3 CTword + w4 
TPword +w5 L + w6 Recency 
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where CluSim, QuFreq, NGene, CTword, TPword , L 
and Recency are features defined below and w1-6 are 
weight parameters between 0 and 1 for each feature.  
• Cluster representation (CluSim). The top five 

descriptive features (a set of MeSH, GO terms 
and/or words) for each gene cluster from the 
previous step are used as this ranking measure. 
CluSim is calculated as the normalized number of 
feature terms the sentence has or assigned to the 
abstract where the sentence is extracted.  

• Gene relations (NGene). Sentences referenced to 
more than one gene/protein names score higher, 
otherwise, 0. Emphasis on relations is also 
reflected in later features, such as relation words in 
TPWord.  

• Cue phrases (CTword). This is identical to the 
Edmundson’s Cue feature based on the assumption 
that the importance of a sentence is represented on 
the presence or the absence of certain key terms. 
For example, the term ‘conclusion’ may indicate 
importance. 

• Domain specific keywords (TPword). Biologically 
relevant keywords were extracted from the 
Textpresso [14] ontology. TPword is calculated as 
count of keywords in the sentence normalized to 
between zero and one, with the sentence having the 
maximum count scoring one. 

• Length (L). Usually the longer the sentence, the 
more information it contains. L is calculated as the 
faction of longest sentence. 

• Recency is calculated as a linear scale for the 
sentences from one to zero, with the most recent 
sentence getting the score one. 

There are many ways to combine the features by 
adjusting the weights. The weighting scheme was 
adjusted empirically based on feedback from users 
during the first stage of the evaluation process.  

Evaluating clustering algorithm. Four gene sets from 
the result of four different microarray experiments 
were tested on the system by two OHSU-based 
mouse genomic researchers. Each person rated the 
gene set generated by his/her own lab. For each gene 
set, the participants labeled the genes they were 
familiar with. Each of the participants compared 
cluster pairs, which had at least one of the familiar 
labeled genes. This setup ensured each person had 
the expertise for the particular gene to judge the 
result. First, participants judged the usefulness or 
meaningfulness of two clusters for each gene set by 
comparing the clusters with random grouping of 
genes. Then, the effects of different clustering 
features (MeSH, GO, text) were evaluated by 
comparing clusters generated by each feature side by 
side. For each cluster pair, participants chose the 
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more useful cluster of genes from the pair using a 5-
point Likert scale: 1.cluster on right is absolutely 
better, 2. cluster on right is better, 3. they are the 
same, 4. cluster on left is better, and 5. cluster on left 
is absolutely better. We also randomized the 
left/right order of the clusters. 

Evaluating ranking of informative sentences. 
Sentences for eight genes (one from each of the 
cluster evaluated in the previous step) were used in 
this step. Sentences from the output of the system 
and PubMed searches (queried by the name of the 
gene and synonym expansion, limited to the time 
period 1994-2003 and filtered by MeSH term mice.) 
were pooled together and judged by the same 
scientists who studied the gene set. The raters 
assigned an R (relevant) or NR (not relevant) label to 
each sentence by judging if it had relevant 
information for understanding the specific gene 
studied in the microarray experiment they were 
analyzing. Results from two genes were used to 
hand-tune the ranking parameter and the other six 
were used to study the system. Only data from the six 
genes is reported here. Three ranked lists were 
compared by mean average precision (MAP) using 
the relevance judgments as a gold standard: 
1. Our system output: Sentences with reference to the 

gene extracted from the abstracts ranked by the 
scoring algorithm. 

2. Same sentence set as in 1 but in reversed 
chronological order, same as PubMed’s ranking.  

3. Output from PubMed search (title of abstract in 
reversed chronological order).  

Using the relevance judgment ‘gold standard’, we 
also calculated MAP for sentences rankings using 
each of the single ranking features to study the 
separate contribution of each feature. 

Results 

Gene clustering. A comparison between gene clusters 
and random groups is shown in Figure 2. Note that a 
cluster received a score of ‘3’ if it was judged as 
good as ‘random’. Statistical analysis using one 
sample t-test indicated that allCluster(combining 
three features results) was significantly better than 
random at p=0.001. Clustering using GO terms was 
also significantly better at p=0.003, while both text 
and MeSH terms were not significant at p=0.20 and 
p=0.094.  

Figure 3 shows the comparison among the three 
features. It seems that MeSH fared better than both 
GO and text terms, while GO was better than text but 
to a lesser extent. The differences were insignificant 
statistically. 
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Sentence ranking. The comparison for the three 
rankings is shown in Figure 4. Showing the sentences 
from the abstract did much better than titles from 
PubMed output. The ranking algorithm gave a 3.2% 
increase over simply reversed chronological order of 
sentences and over 50% increase above PubMed 
titles. Both differences were significant at p=0.021 
and p=0.001 by pair-wise sample comparisons. Each 
feature’s individual contribution is shown in Table 1. 
It appears that TPword was the most useful feature 
and CluSim was the least useful for sentence ranking. 

Discussion 

In general, the clustering algorithm gave better gene 
groups than random as supported by the small p 
values found when comparing all cluster results to 
random and GO to random. The result on MeSH and 
text is inconclusive. The comparison between the 
feature types also showed insignificant differences, 
even we found that MeSH and GO were better than 
text. We suspect it was the small sample size of this 
initial study that did not give us enough power. 
Future work should include more biologists. In 
addition, the system allows any combination of the 
features to be used for clustering, but how different 
combinations fare against single features was not 
studied here and remains for future work. 

We found that judging cluster pairs was not an easy 
task for the scientists. Even though the cluster had at 
least one of the genes they choose as familiar, in 
order to judge the quality of the cluster, they needed 
to follow links in the evaluation screen for 
information on other genes in the cluster. It created a 
bigger work load for the evaluators and by the end of 
the session, they would make their best judgments 
without going through the information for not-so-
familiar genes, possibly due to fatigue. The time for 
cluster evaluation of each gene set ranged from 20 to 
35 minutes. How to best judge the quality of clusters 
is still in general an issue, especially in this case we 
define quality as how meaningful the clusters are for 
a specific microarray experiment, so some analytical  
measures, such as internal and external similarities 
may not correlate closely.  

Providing sentences in the abstract gave much more 
relevant information than titles. The scoring 
algorithm resulted in a statistically significant higher 
MAP score than reversed chronological order for the 
same sentence set. Domain specific ontology terms 
improved results as indicated by the highest single 
feature MAP, even thought it is not significantly 
different from the performance by the ranking 
algorithm. Further research with more samples may 
be able to determine if TPword only can perform as 
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well as the ranking algorithm. Interestingly, 
Keywords in the cluster (cluSim) did not seem to help 
much. One possible reason is that the users prefer 
specific information represented by the ontology 
terms rather than the general knowledge about the 
gene group functions. 
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Figure 2. Comparison between clustering and 
random.  
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Figure 3. Cluster feature comparison.  
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Figure 4. Mean Average Precision scores for the 
three ranked lists. 

Features MAP 
CluSim 0.742 
Ngene 0.790 
CTword 0.796 
TPword 0.850 
Length 0.803 
Recency 0.798 

Table 1 MAP scores achieved by ranking with single 
feature only. 
 

We used part of the evaluation data as tuning to the 
parameters. Since we have six parameters and use 
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only two examples for adjustment, we did not have 
enough data to fully tune the system. It is unknown 
how the rough tuning influenced the system 
performance, but the results on contribution of single 
features provide additional information for future 
tuning work. 

There are several limitations to this system. First, it is 
built on top of a gene NER system, the accuracy of 
which influences the result of clustering and sentence 
selection. Our NER achieves state-of-the-art 
accuracy at 70-80% [15] but some genes got low 
MAP score because the sentences were in fact about 
other genes with identical symbols. Second, the 
system uses the cosine function as a measure of 
similarity. We will test if including semantic distance 
for GO and MeSH terms will improve 
performance[16]. Third, our system did not use more 
advanced NLP techniques, such as parsing and part-
of-speech tagging. It will be valuable to study if 
adding NLP will improve the performance without 
the sacrifice of much speed. Finally, the document 
collection for the system is a static 10-year set of 
MEDLINE abstracts. Once the development and 
testing phases are completed, the database will be 
updated automatically once a week by download 
from NLM. 

Conclusion 

We built and evaluated a gene information 
summarization system for mouse genome 
researchers. The evaluation results indicate that our 
approach seems to generate meaningful gene clusters 
and achieve better sentence ranking than standard 
methods using domain specific ontology terms in 
addition to general sentence features. 
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